ERR

EXPRESSO

FinaL REPORT

Team Number 34

Team Email may1734@iastate.edu
Team Website may1734.sd.ece.iastate.edu
Bill Adamowski Client & Advisor

Lucas Collins Communication Lead
Jonny Krysh Webmaster

Jake Long Technical Lead

Garret Meier Team Lead

Derek Yu Key Concept Holder

Last Revised: April 23, 2017

http://may1734.sd.ece.iastate.edu/
mailto:may1734@iastate.edu

1121

Table of Contents

1 Introduction

1.1 Project statement

1.2 Problem Statement

1.3 Goals

1.4 Existing Solutions
1.4.1 Bean Box
1.4.2 Blue Bottle Coffee
1.4.3 Counter Culture Coffee
1.4.4 Ritual Coffee Roasters

1.5 Definitions

2 Deliverables
2.2 Overall Project Deliverables
2.3 Possible Solutions
2.3.1 Consumer and Provider Interface Solutions
2.3.2 Back End System Solutions
2.3.3 Shipment Method Solutions

3 Design

3.1 System specifications
3.1.1 Non-functional
3.1.2 Functional

3.2 Design Overview
3.2.1 User Service
3.2.2 Billing Service
3.2.3 Inventory Service
3.2.4 Subscription Service
3.2.5 Communication Service
3.2.6 Frontend
3.2.7 Proxy Layer

3.3 Design Patterns
3.3.1 Service Design
3.3.2 Event Queues
3.3.3 Database Schema
3.3.4 Frontend Store and Statefulness
3.3.5 Frontend Container Components

4 Implementation

N N~N~N~NO oo ooaoadsSD

o 0 00 00

ND DN 4 a4 a4 a4 4 a4 a4 = 4
- = O 0o OO O O w wh o o

22

Pace 1 oF 36

1121

4.1 Development Process 22

4.1.1 Task Allocation 22
4.1.2 Git Workflow 22
4.1.3 Continuous Integration 22
4.1.4 Phases 22
4.2 Technical Stack 23
421 Go 23
4.2.2 MySQL 23
4.2.3 Node 23
4.2.4 React 23
4.2.5 Redux 23
4.2.6 RabbitMQ 23
4.2.7 Stripe 23
4.2.8 Shippo 24
4.2.9 Sendgrid 24
4.2.10 Digital Ocean 24
4.2.11 Docker 24
4.2.12 Amazon Web Services S3 24
4.3 Testing 24
4.3.1 Methodology 24
4.3.2 Testing Criterion 25
4.3.3 Testing Status 25
4.4 Challenges 25
4.4.1 Learning New Technologies 25
4.4.2 Golang Dependencies 26
4.4.3 Mockery 26
4.4.4 Stripe Integration 26
4.4.5 Scheduling 26
4.4.6 Managing Build Length 26
4.5 Security 27
4.5.1 Passwords 27
4.5.2 Tokens 27
4.5.3 Secure Socket Layer 27

5 Conclusions 29
5.1 Goals 29
5.2 Completed Work 29

5.3 Future Work 30

Pace 2 oF 36

1121

Appendices
Appendix 1: Operation Manual
Setting Up The Microservices
Appendix 2: Other Considerations
Appendix 3: Links to the Codebase
Appendix 4: Example Configuration File

31
31
31
33
34
35

Pace 3 oF 36

1121

1 Introduction

1.1 PROJECT STATEMENT

Our aim with Expresso is to provide services to local coffee roasters for expanding and
optimizing their business by creating an efficient, automated platform for coffee
roasters to promote and sell their unique coffee brands to a broad range of customers.

1.2 PROBLEM STATEMENT

Small, local coffee shops struggle to make decent profits on roasting and distributing
their beans. The low margins in the coffee industry are due to many factors like price
competition with international chains (Starbucks, Dunkin, etc.), high cost of beans or
roasting, and inventory optimization. Conversely, local coffee businesses often impact
coffee growers most, paying them more reasonably than large chains, as well as
influencing communities by providing a unique atmosphere for work and leisure.
Creating a system similar to Expresso is highly cost prohibitive for individual roasters.
Adding in the cost of building and maintaining an online customer base, only a few
high-profile shops have entered the market (Counter Culture, Blue Bottle). By removing
the necessity of shops to create their own e-commerce platform, we hope to provide
the opportunity for local coffee shops to expand their businesses with minimal effort
and cost. Coffee shops currently roast their beans in house to save money and create a
unique tasting blend, but expanding that business takes significant technical and
marketing effort. As a result, most local roasters don’t sell their coffee outside of their
brick and mortar shop.

1.3 GoALS

From a consumer perspective, our service will help people discover their favorite coffee
brands and pay to get them shipped to their door. We want to provide a convenient,
reliable, and easy way for people to have just the right amount of coffee that fits their
taste delivered to their door. We plan to do this by creating a fully automated order
creation and delivery service for roasters, as well as a platform for customers to
discover, purchase, and review a variety of coffee roasted by small shops around the
country.

Pace 4 oF 36

1121

1.4 EXISTING SOLUTIONS

1.4.1 Bean Box

This coffee distributor, found at https://beanbox.co/, works with 21 of Seattle’s roasters
to distribute their coffee in consolidated boxes to Consumers monthly. This service
uses the centralized shipping method for coffee, and offers subscriptions of one, 120z
bag for $20 monthly. They tout fresh (within 48 hours) roasts delivered with free
shipping around the US. Bean Box has high marks in high quality roasts, but lacks in
customizability and cost effectiveness. Consumers are tied to the roasting schedule
and specific amounts monthly.

1.4.2 Blue Bottle Coffee

Formerly Tonx, Blue Bottle, at https://bluebottlecoffee.com, was one of the early entries
into subscription-based coffee services. They run their entire vertical from sourcing
beans through roasting and distribution. Blue Bottle gives among the highest quality
beans and mid-level prices, but lacks in variety and customizability. All Consumers
receive the same bags of coffee each month, and other options are few and far
between.

1.4.3 Counter Culture Coffee

Counter Culture is one of the more fleshed out coffee subscription brands with a
complete vertical from purchasing beans to shipping the roasted coffees. Found at
https://counterculturecoffee.com/, they offer many, customizable roasts and
subscription offerings. Their coffee isn’t branded as high class as Blue Bottle or Ritual,
but their technical features are quite sound. The primary drawback to the service is that
it’s central to Counter Culture roasts rather than offering a solution to local roasters.

1.4.4 Ritual Coffee Roasters

Ritual Coffee, a San Francisco based coffee roaster, found at
https://www.ritualroasters.com, functions similarly to Blue Bottle, but uses an external
service called Shopify (http://ritual.myshopify.com/) to handle their eCommerce
functionality. Ritual has a few rotating coffees, priced higher than almost all other
options. They offer reasonable customizability, but lack the personalization of Counter
Culture of Blue Bottle, who host their own services. Their approach of using Shopify to
host their eCommerce functionality, is one that undoubtedly has a high barrier of entry
for Providers, but is worth looking into as we continue our implementation of Expresso.

Pace 5 oF 36

https://beanbox.co/
http://ritual.myshopify.com/
https://bluebottlecoffee.com/
https://counterculturecoffee.com/
https://www.ritualroasters.com/

1121

1.5 DEeFINITIONS

Term Definition

Consumer or | The external client who is viewing, purchasing, and receiving
Customer shipments; the coffee consumer.

Provider or | An external entity which holds a type and amount of coffee; the
Roaster coffee roaster.

User Either a Consumer or Provider with no necessary distinction in
Expresso.

Ficure 1

Pace 6 oF 36

1121

2 Deliverables

2.2 OVERALL PRoJECT DELIVERABLES

Consumer can order and receive periodic coffee shipments
Providers can add to, view, and edit an inventory of available goods
Providers can view orders that need to be fulfilled

Providers can receive consumer shipment information to fulfill orders
Consumers can be alerted to incoming and delivered shipments
Consumers are billed for purchased goods

Providers are paid for fulfilled shipments

2.3 PossIBLE SOLUTIONS

2.3.1 Consumer and Provider Interface Solutions
e Mobile Application
e Desktop Application
e Responsive Website

2.3.2 Back End System Solutions
e Microservice architecture
e Monolithic server architecture

2.3.3 Shipment Method Solutions
e Centralized distribution center containing all goods
e Decentralized shipments sent to Provider

Pace 7 oF 36

1121

3 Design

3.1 SYSTEM SPECIFICATIONS
Detail any specifications given and/or assumed about the project.

3.1.1 Non-functional
e All parts of the system should be secure and protected against common attacks
like:
o XSS
o SQL Injection
e Code should be easy to maintain and understand
e User interface should be easy to use
e Secure login and authentication

3.1.2 Functional

Providers shall:

Post their different coffee bean types and prices

View orders placed for their coffee beans

Receive payments for orders

Browse available coffee beans from various shop owners, and be able to place
orders on these beans

Customers shall:
e Subscribe to periodical deliveries of recommended bean
e Send payments for orders they place
e Set preferences for their preferred coffee types
e \View orders they have placed and track their orders

Both shall:

e Log in using an email and password —without both of these the user should not
be allowed access to the service

3.2 DEesIGN OVERVIEW

Our solution for building Expresso involves a microservice architecture with servers
interfacing through REST API’s. Each microservice separates its concerns from the
others and can scale independently. We chose this architecture since it is common

Pace 8 oF 36

1121

industry practice for web applications, and it offers benefits to our development and
implementation cycle.

DigitalOcean Server using Docker

‘ 551 H H Frontend

Service Layer

‘ [Users J[Billing H Subscription | [Communications] Irwemory|

External Services

SQL Instance

RabhithMQ Statsd

Databases

Ficure 2

In the following sections we discuss the high level overview of each service, their design
considerations, and the major data objects each service will be dealing with.

3.2.1 User Service
The user service contains all methods related to user management. This includes
registering, updating, listing, getting users, and resetting user passwords.

Design Considerations

This service requires speed so that users can quickly create their account and get
started using our service. Because of this we will rely on raw API calls rather than
putting all of the requests in a queue to be processed one by one.

Consumer

This class stores information about a customer. The other services contain foreign keys
referencing consumers in this service.

Pace 9 oF 36

1121

Provider
This class stores information about a provider. The other services contain foreign keys
referencing providers in this service.

3.2.2 Billing Service

The billing service handles all payments and billing, including recurring payments. This
service integrates with other Expresso services to gather relevant consumer and roaster
information for payments as well as connecting items, subscriptions and invoices.
Much of this service’s usefulness comes in directly integrating with Stripe, a billing
Service, for securely and consistently handling payment information. Rather than
spreading Stripe integration across all our services, it connects our internal data models
to their corresponding Stripe entities.

Design Considerations

All of the Stripe integration must be handled in the background to create a seamless
user experience for both consumers and roaster, which constrains the billing service to
only using programmatic methods for gathering user information. Because of this, the
billing service creates an easy interface for other services to manage user information
without coupling it to any Stripe credentials, tokens, or keys.

To adequately wrap the implementation details of the Stripe api in an accessible
interface for Expresso’s services, the billing service must maintain relations between
many Stripe entities and their counterparts in our data model (Figure 3). In addition to
storing relations, the billing service implements Stripe’s beta Connect API to manage
dynamically created accounts and transfer funds through invoices from users to
roasters. These managed accounts hold plans and subscriptions for each roaster that
create our recurring billing systems. However, in our design, we noted that one item in
Expresso creates many plans for a managed account based on the offered subscription
periods. So we must maintain the relationship in the Billing service.

Additionally, we chose to tie subscriptions to specific item types meaning that users
can have only one subscription per item, but might have multiple across one or many
roasters. This means that we have to uniquely identify payment information for
customers through our Stripe account to the managed roaster accounts for each
subscription.

Pace 10 or 36

1121

RoasterlD

UserlD]

|
|

CustomerlD]

Subscribed
CustomerlD

Ficure 3

All of this complexity is hidden by the billing service which allows roasters,
subscriptions and customers to be accessed and modified as single entities with their
unique id’s in Expresso’s database schema rather than requiring knowledge of Stripe’s
inner workings.

Because our service is largely subscription-based, we automated usage of Stripe’s API
using Webhooks, that trigger actions on subscriptions only after a successful invoice on
the account. A new invoice triggers activity throughout all the services and results in a
new order being created along with email alerts. By responding to webhooks we can
efficiently create new items without periodic polling or inaccurate cron jobs.

Customer Account
Stores a relation between User ID and Stripe Customer ID. Additionally, the Customer
Id can relate to many subscribed Customer Ids for each customer subscription.

Roaster Account
Stores the relation between Roaster ID and Stripe Managed Account ID, as well as
tokens for accessing and modifying Managed Account information through the roaster.

Plan
Stores the relation between a roaster’s items and the multiple plans stored in Stripe
under the Managed Account. Used to connect subscriptions to items to the desired
plan.

Pace 11 or 36

€

3.2.3 Inventory Service
The inventory service will handle the inventories and automatically generated orders of
each coffee provider. Each provider will be able to add to and update their inventory.
The frontend view will reference the inventories of all providers in order to not sell
product that is out of stock.

Design Considerations

We wanted the minimum viable product (MVP) to allow basic local inventory functions.
More specifically, we ask that the coffee providers simply keep their individual inventory
up-to-date with the latest inventory count. For the MVP, we combined the items,
orders, and shipping details associated with orders into this one inventory service. This
was done such that when orders are fulfilled with a particular item, a decremented
number of that particular item can be updated easily to the database. In a future
version, perhaps orders and shipping could be better abstracted out to be their own
services. Figure 4 shows the basic diagram of the Inventory service. A Roaster has one
inventory which has zero or more impending orders and zero or more items.

Roaster - Inventory <>’_’ order

Ficure 4

Order
Stores an item identifier, quantity information, customer id, shipping lablel, and a ship
date to be used by the provider to ship the specified items.

Item
Represents a real bag of coffee beans to be sold by the provider. Stores the name,
coffee type, description, picture, tags, in stock quantity, and other information about the
item.

Pace 12 or 36

1121

3.2.4 Subscription Service
The subscription service allows users to manage their coffee subscription(s). This
service stores subscription data associated with the user and interfaces this data with
the inventory and billing service.

Design Considerations:

A key issue was how the subscription service will handle multiple subscriptions per
consumer. Currently, the subscription service follows a one to one relationship. Each
user is able to create a single subscription per bean item. Theoretically, a user can
create a subscription for each bean item listed. Because of how intertwined
subscriptions are with the Stripe Billing service and orders within the Inventory service,
specific considerations are need. First, a customer account must exist within the Billing
service before subscription creation. Secondly, customers cannot make multiple
subscriptions of the same bean item. Lastly, the trigger for orders must flow through
Billing, Subscription, and Inventory services in order to gather the correct information
for the periodic shipments.

Subscription

Stores subscription information for the specific user. Includes coffee information: what
bean item, which roaster, and quantity of beans. Also includes the current status of the
subscription and date for the next shipment, in order to trigger new orders within the
Inventory service.

3.2.5 Communication Service

For the communication service, we centralize all methods of communicating externally
to users in one service. Since Expresso relies on asynchronous distribution and
shipping, we need to push communications to users in ways which will get their
attention rather than requiring constant monitoring of our application. The best way to
accomplish this is through email events which are triggered based on application state.
The communication service, Bloodlines, is designed with that end goal in mind.

Design Considerations

In this service, we value accuracy and reliability over speed. Taking that in mind, we can
rely on queuing and events rather than raw API calls. A critical feature of this service is
being able to respond to user interactions easily. We want to send an email each time a
person purchases an item or has a shipment inbound. By responding to events on
webhook triggers (Figure 5) rather than always listening for send request, we can
decouple queuing message with actually sending them. Since communication might be
sprinkled through other services, Bloodlines has to quickly respond when enqueuing

Pace 13 or 36

1121

messages which would drain server resources if it waited for the message to be sent.
We want to avoid a situation where a change to Bloodlines’ code requires changes in
the way we dispatch events from other services which could trigger communications.

@ [
l
Receipt
‘ Content ‘

é/

Email

A

Ficure 5

Content

This object gives reference to various static content messages with the metadata
necessary to correctly send a message.

Receipt

The receipt object contains a record of some content being sent to a user. The state of
the receipt indicates whether it’s waiting to be sent, in the send queue, or finished.

Job

The job object represents a list of content to be sent at a given time. Jobs let content
be scheduled for entry into the queue. Ready is a job that’s waiting to be sent to the
send queue, sending is a jobs that’s currently queuing, and finished means that all the
receipts have been sent to the send queue.

Preference

This object tracks a user’s communication preferences. We don’t want to send a user
emails or sms if they’ve opted out of that type of communication.

Pace 14 or 36

1121

Trigger

The trigger object sets a default pairing of content and parameters that can be updated
and used from external services. This will help us update content that’s sent quite often
without making changes to the code itself.

3.2.6 Frontend

The frontend was originally set up utilizing Create React App
(https://github.com/facebookincubator/create-react-app) provided by Facebook. This
is an opinionated framework starter pack that offers a barebones NodedS web server
for running the frontend and a working React and Redux set-up (compiled using
Webpack). In addition, it included React Router, which we use to handle all of our
application routing.

We chose to go with this toolkit due to the ease of set-up for all team members for
frontend development. In addition to what’s already mentioned, the starter kit offered
niceties like hot reload (for auto-refresh on save) and ESLint (for parsing Javascript for
linting). Our design for development was strongly determined by React and Redux.
The design pattern details will be fully covered in sections 3.3.4 and 3.3.5 below.

We decided on a single-page application which routes without refreshing. The
single-page application functions as a dashboard where users (whether roasters or
customers) can choose pages from the sidebar which then rerenders the content in the
main view. Since Redux handles state and React Router works with React to change
the route and page without actually refreshing, choosing this design was beneficial.

Modifying the Redux state by firing actions with AJAX requests to the server proves to
be incredibly performant. From frontend to server, we can load many items (bean
items, subscriptions, etc.) very quickly. We decided to display items using lazy loading
and an infinite scroll technique rather than paging. This allows for users to continuously
scroll content without having to interact with page numbers. A downside to this design
is that users may not as easily be able to get back to previous items.

3.2.7 Proxy Layer

Since our services are hosted in the cloud and can be dynamically scaled as demand
increases, we need a proxy layer to distribute requests to the correct IP addresses
behind the proxy. To accomplish this, we use nginx as a web proxy between external
requests and all Expresso’s services (Figure 6). The nginx service receives incoming
requests to “expresso.store” and routes them based on subdomain to the different IP
and ports associated with the domain. As a built-in feature, the proxy will load balance

Pace 15 or 36

https://github.com/facebookincubator/create-react-app

1121

between multiple hosts under the same subdomain, ensuring that Expresso could scale
if demand spikes simply by spinning up new hosts.

Requests

Let's Encrypt SSL [— NGINX .
/a\ \, \‘“_

y N ™ Frontend
Translate domain to IP

and port \

’/ \\\‘

Service Service
1| e n

Ficure 6

To take full advantage of the proxy layer, all expresso services also route their requests
through the proxy rather than directly calling the IP of a given service. So, services can
change IPs or ports as long as the proxy can find them and requests will be routed
accordingly.

A final benefit of adding a proxy layer is securing our requests using SSL. Each request
through any Expresso service is signed with the given subdomain’s CA certificate to
provide security assurance to any users connected to our servers.

3.3 DEesSIGN PATTERNS

3.3.1 Service Design

With many microservices being built in Expresso, it was imperative to build each service
similarly and with flexibility in mind as features need to be added during development.
We also wanted to minimize code reuse while maximizing composability between
services. This means that services shouldn’t have to rewrite functionality that multiple
services need, but they should rather be able to build on each other and share
previously implemented functions.

To accomplish this goal, we built a standard framework for services comprised of 5
types: Routers, Handlers, Helpers, Gateways, and Configs.

Pace 16 or 36

1121

€

Routers

The top level object, routers connect handler functionality to urls that can be accessed
over HTTP requests. The router serves to construct all the context, gateways, and other
objects that will be used throughout the rest of the program. The context a router
creates, gets passed to all underlying handlers and contains any connection they have
to other services whether within Expresso or not.

In addition, the router handles tracking metrics and api authentication, code that is
shared between services.

Handlers

Called with incoming HTTP requests, handlers take the generic requests and validate
their parameters, unmarshal their payloads and take action based on the contents.
Handlers don’t contain much logic other than sending error responses or passing out
the result of helpers. By separating the request information from actual data
manipulation, we can keep the code simple and readable in handlers to provide a clear
picture of the path of a request through a service.

This was patrticularly helpful in debugging errors as well as providing a consistent API
interface across all of our services. By providing a consistent API, we significantly
increased our frontend development speed, and reduced the friction when adding new
endpoints or updating functionality.

Helpers

The connection between request and database, helpers generally perform actions on
the underlying data in the services. Helpers directly use gateways and expose
interfaces that retrieve, update, or delete data based on calls from handlers. By keeping
data interaction in handlers, we made composing functionality within a service as
simple as adding a helper and calling its functions.

Helpers also helped consolidate database query building to a single set of functions
rather than spreading them throughout the application. Generally functions in helpers
clearly define their purpose, making code that uses them understandable and simple.

Gateways

These entities helped reduce code duplication throughout our application. A gateway
provides a consistent interface in each service for creating and using connections to
external services. Whether retrieving information from a database, or uploading photos,
the gateways are used exactly the same in every service, and prevent connection
management code from polluting handlers and adding complexity that bogs down
development.

Pace 17 or 36

1121

In addition to external services, each services implemented its own handler that serves
as an interface between other go servers and itself. These gateways essentially wrap
HTTP requests and response, but serve an important purpose of clearly defining the
interactions between services. Rather than having to update all our code across all the
services if an API changes, we can simply rebuild using the new gateway and guarantee
consistent behavior across all the services. This helped add some peace of mind when
making rapid changes in backend development.

Configs

Finally, the configs helped give each service a standard data type for defining and
accessing application configuration. Given that Expresso’s services always need
connection information, having inconsistent ways for reading configuration variables
would significantly hamper the portability of our code.

Using the configs objects, it’s simple and consistent to share or update configuration in
different microservices.

3.3.2 Event Queues

Expresso not only has to respond to predefined requests from its services, but it also
has to respond appropriately to 3rd party webhooks. Responding to these webhooks
required more than just a simple API endpoint because the volume from external
providers could tax server resources that would be better spent serving data for our
users. However, important events in webhooks should still be handled in a fault tolerant
and timely manner. To accomplish this, we created an event queue interface of
producers and consumers that allows webhook requests to be handled quickly, events
placed into a queue, and then handled by a worker lazily.

With this webhook setup we can scale the number of workers to match demand and
server resources while not losing API responsiveness, a critical factor in our design.

Worker implementation is integrated into the handlers and gateways of Section 3.3.1
and requires only implementing a single function interface for handling new messages.
Any message produced in the service will be pushed to a queue denoted in the
configuration file and then workers can read those messages whenever they arrive.

Pace 18 or 36

1121

External
Service

Webhook
URL

Message II
Queue

{ Worker] { Worker]

Ficure 7

Pace 19 or 36

1121

3.3.3 Database Schema

| roaster_account v
id VARCHAR(36)

> stripeAccountld V ARCHAR (48)

» secret VARCHAR(48)

» publishiable v ARCHAR(48)

- ——

_ content v
id V¥ ARCHAR(36)

¥ contenfType VARCHAR(20) s
¥ text V ARCHAR(4096)
+ parameters VARCHAR(1024)
> status VARCHAR(20)
 subject V ARCHAR(1024)

>

"] roaster v
d VARCHAR(36)

» name VARCHAR(30)

> email VARCHAR (200)

© phone VARCHAR(12)

» addressLinel VARCHAR(200)

» addressline? VARCHAR(200)

» addressQity V ARCHAR(30)

» addressstate VARCHAR(30)

» addressZip VARCHAR(10)

» addressCountry VARCHAR(20)

> profilelirl VARCHAR(512)

 birth VARCHAR(10)

TR

] orderT v
id VARCHAR{38)

¥ userID VARCHAR(36)

@ subscriptionID W ARCHAR{ 36)

“ requestDate TIMESTAMP

2 shipDate TIMEST AMP

» quantity INT(11)

¥ status VARCHAR(48)

*gbelUrl YARCHAR(512)

< temId VARCHAR(36)

"] user ¥
id VARCHAR(36)

> passHash VARCHAR(50)

> frstilame V ARCHAR(20)

* |asthlame VARCHAR{20)
 email VARCHAR({200)

2 phone VARCHAR(12)

» addressLine1 VARCHAR{200)
* addressline2 VARCH AR (200)
» addressty VARCHAR(30)

> addressState VARCHAR(30)
> addressZip VARCHAR(10)

> addressCountry VARCHAR(20)
© roasterld VARCHAR(36)

> isRoaster SMALLINT ()
< profilelr| VARCHAR(512)

] suborder i
id VARCHAR(36)

> orderID VARCHAR(36)

itemID VARCHAR(36)

> quantity INT{11)

~—{ > email ¥ ARCHAR(20)

:] preference ¥
id VARCHAR(38)

userld VARCHAR(35)
>

I customer_account ¥
userld VARCHAR(36)
stripeCustomerld VARCHAR(4E)

"] item v
id VARCHAR{38)

»roasterlD VARCHAR(38)

»name VARCHAR(100)

> pictureURL V ARCHAR(200)

> coffeeType WARCHAR {100}
inStockBags INT{11)

> providerPrice DECIMAL {5,2)

—r—OL 2 consumerPrice DECIMAL(5,2) 1+

> ozInBiag DECIMAL(5,2)
description VARCHAR(2048)
»isDecaf VARCHAR(10)
> isActive VARCHAR(10)
< tags VARCHAR(2048)
> createdAt TIMESTAMP
> UpdatedAt TIMESTAMP

—liob v
»sendTime TIMESTAMP
id VARCHAR(36)
» sendStatus VARCHAR(20)
> receipts VARCHAR (4036)
>

:] subscription v
id VARCHAR(38)

— — — ——iH @userld VARCHAR(35)

» status VARCHAR(48)

» createdAt TIMEST AMP

» frequency VARCHAR(36)
@ roasterld VARCHAR(36)

— —j< #itemld VARCHAR(36)

quantity INT(11)
>
] receipt v
7 ts TIMEST AMP
id VARCHAR(36)
> sendState VARCHAR(20)

»vals V ARCHAR(4096)
contentld Y ARCHAR(36)
 userld VARCHAR(36)

Ficure 8

> finished TIMEST AMP
= >
"] token
»value VARCHAR(36)
emal VARCHAR(200)
> createdAt TIMEST AMP
> status VARCHAR(20)
>
)
L
|
———————— |
I | plan v
I roasterld VARCHAR(36)
| © planlds VARCHAR(256)
I »itemId VARCHAR(36)
|
|
|
|
|
|
il
A
| subscribed v _1 b_trigger v
> stripeCustomerld VARCHAR(48) id VARCHAR(36)
» connectedld VARCHAR (48) * they VARCHAR(1024)
@ rossterld VARGHAR(38) »vals VARCHAR (4096)
> & contentid ¥ ARCHAR(36)
»

Pace 20 or 36

1121

3.3.4 Frontend Store and Statefulness

On the frontend, we are using Redux to handle both a data store and statefulness of
Reat components. In essence, the store is immutable, meaning there is no way to
modify the data unless an action has been fired from a component. When an action is
fired, there is typically a modification to the application’s state. All of the actions and
store updates are done seamlessly without requiring refreshing the application, giving
the application a feeling of live updates. Common actions might be REQUEST_ITEMS
or LOGOUT, described below.

The LOGOUT action is used to clear the user’s JWT and log the user out. In additon,
this action resets the store to it’s initial state to continue a new session.

The REQUEST_ITEMS action is used to fetch data from the server with AJAX. Once the
AJAX response is received, it is sent through a reducer which will map the data to a
specific section of the store. Afterward, if there is new data in the store, it will be
updated in any component using that data. We apply the data to components by
mapping the data from the store to props on the component. This is typically done in a
container component, which is explained more thoroughly in the following section.

3.3.5 Frontend Container Components

With React on the frontend, we followed a container design pattern for components.
The idea behind using container components is to separate heavily logic-driven
components into both presentational and container components. Presentational
components are supposed to contain little-to-no logic and provide the necessary JSX
(in-line Javascript html). Container components handle all events, callbacks, and
fetching with AJAX. In addition, they fire all Redux actions and handle mapping of data
from the store. In React, it is beneficial to pass data from top-level components
downward. This design pattern provides a way for us to enforce the best prop
handling.

Pace 21 or 36

1121

4 Implementation

4.1 DeEvVELOPMENT PROCESS

4.1.1 Task Allocation

Tasks are prioritized and divided at our weekly meetings and on the fly- those that are
vital to a minimum viable product are given precedence. If someone holds a clear
preference towards a task, then that task is assigned to him. Unforeseen issues
sometimes arise as development progresses; whoever feels they have ample time will
address the issue.

4.1.2 Git Workflow

We follow a standard Git workflow. We have a base branch master that stays
deployable - the branch is safe to compile and runs with no errors. To add new
features, we create feature branches off of master and add new source code there.
Once the feature is ready, we submit a pull request for the specified feature branch
where other team members will review the changes. This allows the team to stay
informed on what features on being added, catch mistakes, and create improvements.
Once reviews are complete, we merge the feature branch into master and start the
process over again with a different feature branch. We also utilize git’s issues feature to
create assignable tickets for enhancements and bug fixes. This helps prevent
overlapping work and also facilitates discussion for each issue.

4.1.3 Continuous Integration

Our backend services utilize TravisCl for continuous integration. Each service has unit
tests that TravisCl automatically runs, each time new code is pushed. This maintains
code quality and catches erroneous behaviours before we containerize and deploy the
updated services.

4.1.4 Phases

We have split development into flexible, continuous phases: backend, backend plus
frontend, and frontend plus bug fixes. We first created the backend microservices,
implementing RESTful API's for each service. Once basic CRUD operations were
completed, we implemented the frontend to interact with the APl endpoints, then
finished up with bug fixes. The beauty of software development is that we are not
permanently stuck in one phase. We have the ability to create changes on the fly, such
as altering the backend to satisfy evolved requirements, while also developing the
fronted at the same time. This flexibility creates an efficient development process,

Pace 22 or 36

1121

allowing us to dynamically improve any aspect of the application, based on evolving
requirements.

4.2 TECHNICAL STACK

4.2.1 Go

Go is a free and open source programming language. Go makes it easy to map routes
to functions in the application. Because of this we will be using Go to implement our
backend services.

4.2.2 MySQL

MySQL is a relational database management system. MySQL is scalable and high
performance. We will be using a MySQL database to hold information about customers,
shops, inventory, and orders.

4.2.3 Node

NodedS is a JavaScript runtime environment which uses an event-driven architecture.
NodedS is capable of asynchronous IO to optimize throughput and scalability for web
applications. We used Node for an entry point to our frontend and use the node
package manager (npm) to download and install client javascript libraries.

4.2.4 React

React is a JavaScript library that provides views for data displayed using HTML. React
allows for efficient updating of the web page when data changes. React can also be
used to create a responsive website. Because of these features we will be using React
to create our front-end website.

4.2.5 Redux

Redux is “a predictable state container for JavaScript applications” that links with React
to create a seamless flow of data throughout the frontend of the application. In short,
Redux has a store which holds the application’s data. Actions are fired from the from
React components to populate the store. The store then updates the data, re-rendering
components with the new data.

4.2.6 RabbitMQ
RabbitMQ is a message queueing service that allows different components to interact
with each other.

4.2.7 Stripe

Stripe allows individuals to accept and make payments over the Internet. We will be
using Stripe to handle charging customers, subscription payments, and paying the
shops for the orders they ship.

Pace 23 or 36

1121

4.2.8 Shippo

Shippo is an API that allows for the creation of shipping labels, shipping packages, and
tracking the packages from various providers. We will be using Shippo to send the
coffee beans to the customers and give shipment updates to users.

4.2.9 Sendgrid

Sendgrid is an email delivery service. We will be using Sendgrid in our communication
service to keep customers updated about their subscriptions, shipped orders, and any
messages they have received.

4.2.10 Digital Ocean

Digital Ocean host all of our servers, database, proxy, and stats information. By using
cloud hosting we’ve ensured constant uptime during development, and Expresso is not
locked to any one computer but can be deployed and expanded in minutes.

4.2.11 Docker

Docker creates a lightweight method for containerizing our services and deploying them
either locally or in a cloud environment with no setup. The structure of docker-compose
files also allows us to expand our hosting on the fly without having to worry about
specific configuration on devices.

4.2.12 Amazon Web Services S3
To host static content (images), we use Amazon S3. As an industry standard with
simple interfaces, we can store our files without wasting our limited server space.

4.3 TESTING

4.3.1 Methodology

With many disparate services, integration testing from the start is a high priority for
development. In order to guarantee reliable integration tests, reasonable unit testing
should also be conducted on implemented interfaces.

At the very least, testing for each service should exercise mocks from other services
which can be created through golang’s built-in mocking library. Using go’s built-in
functionality for mocking in unit testing, unit tests can run without relying on correct
functionality from other services, so development can continue concurrently without
one implementation bottlenecking another.

In addition to depending on mocks for mocking integrations during unit testing, full
integration testing is planned as soon as possible. To accomplish painless integration
testing for each service, we plan on using containerization to allow developers to run

Pace 24 or 36

https://github.com/golang/mock

1121

any dependent services locally while running integration suites or conducting manual
integration tests.

4.3.2 Testing Criterion

We've decided on two primary testing criterion with which we’ll evaluate tests for
validity and intensity: branch coverage and requirements acceptance. With these two
primary requirements guiding our test writing, we minimize time consuming errors, while
avoiding spending too much time writing test cases.

Optimizing for high branch coverage will help ensure that most lines of code are run
before pushed to development for integration testing and that we’ve handled error
cases which we expect. Since error handling in go consists of testing for error values
returned from function calls, branch coverage will help prioritize catching erroneous
responses in testing before integration.

Requirements Acceptance is a focus of integration testing where we must test whether
the system works together based on our functional and nonfunctional requirements. By
meeting the requirements acceptance criteria, we can validate that the Expresso
functionality meets our initial requirements for completion.

4.3.3 Testing Status

Throughout development, especially at early stages, we focused on building unit test
suites for critical components of our infrastructure. These test suites focused on the
core logic and prioritized for business logic rather than input validation. To balance new
development and regression testing we decided not to set a team-wide standard of
code coverage, but have managed to keep above 50% of the total on each of our
microservices.

In addition to pure unit testing, integration testing was also a priority during
development. Determining where and when services were malfunctioning can be
difficult in microservice system, so we placed a high priority on gathering service
metrics from the outset of development. To do this, we embedded stats gathering into
every service request and response, including timing and response type. Gathering
these metrics helped preliminarily determine where faults were occurring and quickly
stop them without digging into the code too much.

4.4 CHALLENGES

4.4.1 Learning New Technologies

For many of us, this was our first time working with Golang, React, and Redux. As such,
we had to spend time learning these technologies instead of jumping right in and
working. Even after we had gone through tutorials and started working on our actual

Pace 25 or 36

1121

project, we still ran into problems that we didn’t know the answer to. When this
occurred we would talk to each other about the problems we were running into, and if
no one knew what the solution was we would do further research into the topic.

4.4.2 Golang Dependencies

We use an external library, godeps, to manage backend dependencies. Some of
godep’s functionality clashes with Golang’s built in library installation command go get.
Originally we consistently used the godeps command restore to update dependencies.
This detached the libraries, breaking go get. To fix this, we needed to cumbersomely
navigate to each library and re-point the git repository to HEAD. To alleviate this
problem, we now remove the generated godeps dependency file and execute the
godeps command save to regenerate the list of dependencies. Save does not detach
the library repositories, so we can continue development smoothly.

4.4.3 Mockery

We use Golang’s built in mock library, mockery to create mocks for unit testing. A team
member had consistent problems generating mocks, creating a small bottleneck for
back end changes. His inability to mock was caused by specific parsing error native to
the Windows environment, which is still currently being investigated by mockery
maintainers.

4.4.4 Stripe Integration

Typically, Stripe transactions are kept between many users and one account owner.
This account owner is normally the business offering the service, Expresso in our case.
However, our needs required that we add additional accounts for the roasters on our
platform, so they can receive funds from their subscribers and transfer funds to their
own business bank accounts. This management required a great deal more
involvement than was initially planned and required a deep understanding of the Stripe
ecosystem.

In the end though, the Stripe integration made for smooth invoices and helped us avoid
storing payment and bank information.

4.4.5 Scheduling

Because of the coupling between the microservices and the frontend there were often
times when one of us was waiting on another to finish their work. This became a
challenge because we all have different schedules and weren’t always able to get
features implemented as quickly as possible. At times this led to some features being
set aside until the necessary features were implemented.

Pace 26 or 36

1121

4.4.6 Managing Build Length

At one point in the project building all 5 services, database, proxy, and stats required
approximately 10 minutes and over 5 GB of storage. With multiple builds each day, this
was rapidly cutting into the development cycle, eating up a chunk of storage on Digital
Ocean, so we investigated decreasing the build size as a way to both decrease the
build time and open up storage on Digital Ocean. Previously, the Docker images for
each of the 5 services was based on a regular version of Ubuntu taking 650 MB of
storage for each service, and contributing to most of the delay in restart time. So, we
investigated alternative Docker images with smaller versions of linux on them,
eventually settling on using the minimal image taking only 5 MB.

After switching all services to use the minimal image size, we cut each service down to
only 20 MB, and kept build time under 5 minutes. This reduced the total build size by
two orders of magnitude, and helped keep our iteration fast.

4.5 SECURITY

4.5.1 Passwords

The first step in securing a user’s account is to let the user set a password. When a
user registers their account they enter their password, which is then submitted to the
user microservice. Before the user’s information is stored in the database, it is
encrypted using the bcrypt library. The resulting hash is then stored in the database and
used to compare to the password users enter while logging in. On the frontend we
require that passwords are at least 10 characters long.

4.5.2 Tokens

To ensure that only authenticated users are able to access our microservices we
decided to use JSON Web Tokens (JWT). A JWT is a self-contained, compact method
for transmitting data. The information in the token is signed upon creation, so that it can
later be verified as an authentic token. When a user creates their account or logs in, a
new JWT is created and signed using a secret stored in an environment variable on
Digital Ocean. That token is then passed to the frontend application and sent with each
HTTP request the application makes. Each route that contains protected data will verify
the signature of the token and only supply the requested information if the token is
valid.

The token is stored in local storage on the client. This means that when a user logs in,

navigates away from our application, and then later returns to the application they will
not have to log back in, as the stored token is sent to the server for verification.

Pace 27 or 36

1121

4.5.3 Secure Socket Layer

We set up our website with a Secure Socket Layer (SSL) certificate, which enables
encryption between the website and the server, so that any information sent cannot be
read by anyone that intercepts it. When a connection is established between a client
and the server, both go through a handshake process to verify the certificate and
establish a session key, which is then used for encrypted communication between the
client and server.

Pace 28 or 36

1121

5 Conclusions

5.1 GoaLs

From a consumer perspective, our service will help people discover their favorite coffee
brands and pay to get them shipped to their door. We want to provide a convenient,
reliable, and easy way for people to have just the right amount of coffee that fits their
taste delivered to their door. We plan to do this by creating a fully automated delivery
service for roasters, as well as a platform for customers to discover, purchase, and
review a variety of coffee roasted by small shops around the country. This will begin in
Ames, eventually scaling to lowa and (a lofty foresight) nationally.

5.2 CompLETED WORK

At the outset, our goal was to create a scalable web-service with a modern architecture
and programming practices. Thus far, we’ve succeeded in creating a minimum viable
product that could be opened up for consumer use with only a few minor tweaks (like
switching to a non-testing Stripe instance). Expresso accomplishes all of our stated
requirements, allowing users to browse, subscribe and pay for shipments of coffee
beans from roasters on the service. From a roaster perspective, we allow roasters to
easily display their items, receive new orders, and act on those orders by shipping them
out.

In addition to minimal functionality, we also have a more robust inventory management
system, email alerts, and automation on the backend that gives user’s more than just
an amateurish experience.

From a technical perspective, we’ve succeeded in creating a modern microservices
architecture that’s easily scalable and deployable on cloud services. With the
containerization between services, some of our implementation could even be used in
other applications just by configuring it correctly. Our implementation, while not
completely tested, has a significant test base that could be expanded with only a
moderate amount of effort.

So, with that said, the completed work this semester meets our stated goals and could
be easily deployed as a production scale system for ordering and shipping coffee from

local roasters.

Pace 29 or 36

1121

5.3 Future WoRK

There are no major plans for the team to continue work on this project after the
completion of our course. Nonetheless, the following is a list of next steps that could be

taken:
1.

Consult with local coffee shops in Ames, demoing Expresso. Feedback could be
taken into consideration and updates made to the site. If a coffee shop wishes
to try out Expresso, we could help them get started.

Implement a centralized inventory version with automated shipping that would
function in the event that a centralized inventory and shipping system is desired.
Implement better review functionality, allowing customers to give feedback.
Similarly, the backend could possess machine learning functionality that would
understand which items to recommend to customers based on reviews and
habits.

Implement item bundles, allowing for single subscriptions to consist of multiple
types of coffee products.

Generalize the system to allow for other types of item subscriptions other than
coffee.

Pace 30 or 36

1121

Appendices

APPENDIX 1: OPERATION MANUAL

We have our projected hosted on Digital Ocean. You can visit our final implementation
of the web app at expresso.store. You can also download each of the parts and run

them on a local machine.

Setting Up The Microservices
Prerequisites:
e |Install Golang
Install Make (also part of the build-essential package on Linux)
Install git
Install Docker
Run the command “go get github.com/tools/godep”
Run the “ghmeier/expresso-mysqgl” image
Run the “ghmeier/rabbitmqg-delayed” image

Steps:

1. To set up bloodlines, run the following commands in a terminal
a. go get github.com/ghmeier/bloodlines
b. cd $GOPATH/src/github.com/ghmeier/bloodlines
c. godep restore
d. make deps

2. To set up towncenter, run the following commands in a terminal
a. go get github.com/jakelong95/towncenter
b. cd $GOPATH/src/github.com/jakelong95/TownCenter
C. godep restore
d. make deps

3. To set up coinage, run the following commands in a terminal
a. go get github.com/ghmeier/coinage
b. cd $GOPATH/src/github.com/ghmeier/coinage
c. godep restore
d. make deps

4. To set up covenant, run the following commands in a terminal
a. go get github.com/yuderekyu/covenant
b. cd $GOPATH/src/github.com/yuderekyu/covenant
C. godep restore
d. make deps

Pace 31 or 36

https://git-scm.com/downloads
https://www.gnu.org/software/make/
https://hub.docker.com/r/ghmeier/rabbitmq-delayed/
http://expresso.store/
http://hub.docker.com/r/ghmeier/expresso-mysql
https://golang.org/doc/install
https://www.docker.com/

1121

To set up warehouse, run the following commands in a terminal

a. go get github.com/Icollin/warehouse

b. cd $GOPATH/src/github.com/Icollin/warehouse

C. godep restore

d. make deps
Each of the services needs a configuration file named config.json. An example
config file can be found in Appendix 4. Enter the values according to how you
have everything set up and place the config in the root of each microservice
directory
In each microservice run the command make run from a terminal

Pace 32 or 36

€

APPENDIX 2: OTHER CONSIDERATIONS

During the design process we decided on a solution with responsive web applications
for both Consumers and Producers and a microservice backend system powering the
interactions with a distributed shipping method.

By using a web application as the primary user interface for Expresso, we can maximize
usability across devices while condensing our development workflow into a single
platform. While mobile applications provide easy access on phones and tablets,
developing applications can be time intensive with limited abstraction between
applications. Developing mobile solutions which function at a high level on both
Android and iOS platforms would require significant development effort which could be
instead applied to building the core product. An additional consideration in our decision
to build the Ul as a web application was the primary use cases of Expresso. From a
user perspective, the ideal experience is ordering a subscription and continuously
receiving high quality product within expected timeframes without visiting the website
again. The value of Expresso isn’t in an interface users spend a great deal of time using,
but in reliability of our back end systems. Once again, this highlights that the best use
of our development time is in building reliable systems for handling the logistics of
shipping coffee subscriptions.

When considering whether to use a monolithic or microservices architecture, we
weighed the technical as well as development process impacts of both options and
decided on the microservice approach for a few reasons. One, microservices offer
increased flexibility and autonomy for developers. Rather than performing rapid
development on a code base with dependencies spread throughout, we can work on
smaller services with mocked responses from areas which haven’t been implemented.
Scaling is an additional point in favor of using microservices which allow us to
individually increase capacity for services which are facing a heady load rather than
scaling the entire application. This would let us react rapidly to high demand situations.

Finally, we chose to work with the distributed model for shipping the Producer’s
product to our Consumers. This model allows Expresso to ensure fresh coffee being
shipped along the shortest path from Producer to Consumer. The distributed model
increases our logistical workload, with having to manage packaging and shipping
information, but ensuring freshly delivered beans took priority. Additionally, this method
removes a barrier to expanding Expresso to additional Producers by letting the
Producers manage their own inventory and not sending their beans to a central
distribution center.

Pace 33 or 36

1121

APPENDIX 3: LINKS TO THE CODEBASE

The code for our front-end web application and each of our microservices can be found
below:

Expresso — https://github.com/jonnykry/expresso

User Service — https://github.com/jakelong95/TownCenter

Billing Service — https://github.com/ghmeier/coinage

Subscription Service — https://github.com/yuderekyu/covenant

Inventory Service — https://github.com/Icollin/warehouse

Communication Service — https://github.com/ghmeier/bloodlines

Pace 34 or 36

https://github.com/ghmeier/bloodlines
https://github.com/ghmeier/coinage
https://github.com/jakelong95/TownCenter
https://github.com/lcollin/warehouse
https://github.com/yuderekyu/covenant
https://github.com/jonnykry/expresso/

112

APPENDIX 4: ExamMPLE CONFIGURATION

"mysgl": {
"host": string,
"port": string,
"user": string,
"password": string,
"database": string

by

"sendgrid": {
"api key": string,
"from email": string,
"from name": string,
"host": string

by

"towncenter": {
"host": string,
"port": string

by

"bloodlines": {
"host": string,
"port": string

by

"coinage": {
"host": string,
"port": string

by

"covenant": {
"host": string,
"port": string

by

"warehouse": {
"host": string,
"port": string

by

"rabbit": {
"host": string,
"port": string,
"pubg": string

I

"statsd": {
"host": string,
"port": string,
"prefix": string

by

"port": string,

"tls": |
"enabled": boolean

by

"s3": |
"bucket": string,

by

"stripe": {
"secret": string,
"public": string

I

"shippo": {
"token": string

FILE

Pace 35 or 36

