
Expresso
DESIGN DOCUMENT

Team Number 34
Bill Adamowski Client & Advisor
Lucas Collins
Communication Lead
Jonny Krysh Webmaster
Jake Long Technical Lead
Garret Meier Team Lead
Derek Yu Key Concept Holder

Last Revised: October 24th, 2016

Contents

1 Introduction
1.1 Project statement
1.2 Problem Statement
1.3 Goals
1.4 Definitions

2 Deliverables
2.2 Overall Project Deliverables
2.3 Possible Solutions

2.3.1 Consumer and Provider Interface Solutions
2.3.2 Back End System Solutions
2.3.3 Shipment Method Solutions

3 Design
3.1 System specifications

3.1.1 Non-functional
3.1.2 Functional

3.2 Proposed Design
3.2.1 User Service
3.2.2 Billing Service
3.2.3 Inventory Service
3.2.4 Subscription Service
3.2.5 Communication Service

3.3 Design Analysis
3.3.1 Technical Feasibility

4 Development
4.1 User Service
4.2 Billing Service
4.3 Inventory Service
4.4 Subscription Service
4.5 Communication Service
4.6 Technical Stack

4.6.1 Go
4.6.2 MySQL
4.6.3 Node
4.6.4 React

PAGE 1

4.6.5 RabbitMQ
4.2.6 Redis
4.2.7 Stripe
4.2.8 Shippo
4.2.9 SparkPost

4.7 Testing
4.7.1 Methodology
4.7.2 Testing Criterion
4.7.3 Process

5 Conclusions
5.1 Completed Work
5.2 Goals
5.3 Solution

6 References

7 Appendices

PAGE 2

1 Introduction

1.1 PROJECT STATEMENT

Our aim with Expresso is to provide services to local coffee roasters for expanding
and optimizing their business by creating an efficient, automated platform for coffee
roasters to promote and sell their unique coffee brands to a broad range of
customers.

1.2 PROBLEM STATEMENT

Small, local coffee shops struggle to make decent profits on roasting and distributing
their beans. The low margins in the coffee industry are due to many factors like price
competition with international chains (Starbucks, Dunkin, etc.), high cost of beans or
roasting, and inventory optimization. Conversely, local coffee businesses often impact
coffee growers most, paying them more reasonably than large chains, as well as
influencing communities by providing a unique atmosphere for work and leisure.
Creating a system similar to Expresso is highly cost prohibitive for individual roasters.
Adding in the cost of building and maintaining an online customer base, only a few,
high-profile shops have entered the market (Counter Culture, Blue Bottle). By
removing the necessity of shops to create their own e-commerce platform, we hope
to provide the opportunity for local coffee shops to expand their businesses with
minimal effort and cost. Coffee shops currently roast their beans in house to save
money and create a unique tasting blend, but expanding that business takes
significant technical and marketing effort. As a result, most local roasters don’t sell
their coffee outside of their brick and mortar shop.

1.3 GOALS

From a consumer perspective, our service will help people discover their favorite
coffee brands and pay to get them shipped to their door. We want to provide a
convenient, reliable, and easy way for people to have just the right amount of coffee
that fits their taste delivered to their door. We plan to do this by creating a fully
automated delivery service for roasters, as well as a platform for customers to
discover, purchase, and review a variety of coffee roasted by small shops around the
country. This will begin in Ames, eventually scaling to Iowa and (a lofty foresight)
nationally.

PAGE 3

1.4 DEFINITIONS

Term Definition

Consumer or
Customer

The external client who is viewing, purchasing, and receiving
shipments; the coffee consumer.

Provider or
Roaster

An external entity which holds a type and amount of coffee; the
coffee roaster.

User Either a Consumer or Provider with no necessary distinction in
Expresso.

FIGURE 1

PAGE 4

2 Deliverables

2.2 OVERALL PROJECT DELIVERABLES

● Consumer can order and receive periodic coffee shipments
● Providers can view and edit an inventory of available goods
● Providers can receive consumer shipment information to fulfil orders
● Consumers can be alerted to incoming and delivered shipments
● Consumers are billed for purchased goods
● Providers are paid for fulfilled shipments

These deliverables will take the form of a software application comprised of an
interface for Consumers, an interface for Provider, a back end software system for
managing data collected from Consumers and Producers, and a method for
shipments.

2.3 POSSIBLE SOLUTIONS

2.3.1 Consumer and Provider Interface Solutions
We will have unique interfaces for each developed as:

● Mobile Application
● Desktop Application
● Responsive Website

2.3.2 Back End System Solutions
● Microservice architecture
● Monolithic server architecture

2.3.3 Shipment Method Solutions
● Centralized distribution center containing all goods
● Decentralized shipments sent to Provider

PAGE 5

3 Design

3.1 SYSTEM SPECIFICATIONS

Detail any specifications given and/or assumed about the project.

3.1.1 Non-functional
● All parts of the system should be secure and protected against common

attacks like:
○ XSS
○ SQL Injection

● Code should be easy to maintain and understand
● User interface should be easy to use

3.1.2 Functional
Providers shall:

● Post their different coffee bean types and prices
● View orders placed for their coffee beans
● Receive payments for orders
● Browse available coffee beans from various shop owners, and be able to place

orders on these beans

Customers shall:

● Subscribe to periodical deliveries of recommended bean
● Send payments for orders they place
● Set preferences for their preferred coffee types
● View orders they have placed and track their orders

Both shall:

● Log in using an email and password—without both of these the user should
not be allowed access to the service

3.2 PROPOSED DESIGN

Our proposed solution for building Expresso involves a microservice architecture with
servers interfacing through REST API’s. Each microservice separates its concerns
from the others and can scale independently. We chose this architecture since it is

PAGE 6

common industry practice for web applications, and it offers benefits to our
development and implementation cycle.

 FIGURE 2

In the following sections we discuss the high level overview of each service, their
design considerations, and the major data objects each service will be dealing with.

3.2.1 User Service
The user service will contain all methods related to user management. This includes
registering, updating, listing, and getting users.

PAGE 7

Design Considerations
This service requires speed so that users can quickly create their account and get
started using our service. Because of this we will rely on raw API calls rather than
putting all of the requests in a queue to be processed one by one.

Consumer
This class stores information about a customer. This class stores foreign keys to the
subscription service, billing service, order service, and communication service. This
acts as a method to find this information about a specific consumer in the other
services.

Provider
This class stores information about a provider. This class stores foreign keys to the
billing service, order service, inventory service, and communication service. This acts
as a method to find this information about a specific provider in the other services.

3.2.2 Billing Service
The billing service will handle all payments and billing, including subscription-based
payments. This service will need to utilize other services, such as the messaging
service to send emails to users regarding payment information. The majority of this
service is dependent upon the Stripe API and acts mostly as a wrapper to their
service. When a user signs up for a subscription, they will need to pay for the
subscription using Stripe’s API. Our billing service will store and maintain all tokens
related to each individual user and their Stripe information.

Design Considerations
There are many considerations due to our dependence on the Stripe API to handle
accounts for Expresso, our customers, and our roasters. We can achieve this
through using Stripe’s Connect, which allows use to programmatically create and
maintain Managed Accounts for Roasters to receive payments. In addition, we will
add Customers which will have a single, unique subscription to many roasters. The
limitations of this make multi-product subscriptions difficult, so we may want to offer
subscriptions only to a single source at first.

Because our service is largely subscription-based, we will be able to automate much
of our usage of Stripe’s API using Webhooks, allowing for updates based on
changing statuses on accounts, subscriptions, and customers. This also promotes a
lightweight billing service on our end with less network communication. More of
these technical details are described in the billing development section.

Account (User)

PAGE 8

This will store all Stripe keys and Billing-related account information for the
customers.

Account (Roaster)
This will store all Stripe keys and Billing-related account information for the roasters.

Subscription
This will store all Stripe keys and Billing-related subscription information, as well as
the keys to both user and roaster(s).

3.2.3 Inventory Service
The inventory service will handle all local (individual coffee providers) and global
(union of all local inventories) inventories. Each coffee provider will be able to manage
and update their inventory. Expresso will mostly use the global inventory to display
and sell subscriptions based on what is available from the union of all local
inventories.

Design Considerations
We want the MVP to allow advanced global and basic local inventory functions. More
specifically, we will enforce strict control over available global inventory, asking the
coffee providers to simply keep their individual inventory up-to-date with the latest
inventory count. It is likely that the Inventory Service will expand to include another
major piece of API functionality, the Orders Service. This would allow more direct
control over how orders are requested, both on the local and global levels. But for this
iteration, the Inventory Service will suffice. On top of that, If we choose to move
beyond the MVP, more advanced local inventory control and functionality can be
implemented to help coffee providers plan, predict, reorder supplies, and interact with
any current inventory software they might currently use.

Inventory (Global)
This will store all inventory information regarding the union of all local coffee shop
inventories.

Inventory (Local)
This will store all inventory information regarding local coffee providers.

3.2.4 Subscription Service
The subscription service will allow users to create, update, and cancel their coffee
subscription. This service will store all relevant subscription data associated with the
user.

PAGE 9

Design Considerations:
A key issue was how the subscription service will handle multiple subscriptions per
consumer. Currently, the subscription service follows a one to many relationship.
Each user will be able to create a single subscription. Within this subscription will be a
list of orders, which specify which coffee the user has selected to include within their
subscription. This creates flexible subscriptions for users, resulting in a customizable
experience.

Subscription
This object contains subscription data relevant to the user.

Orders
This object contains a list of coffee products the user has selected to be included
within the subscription

3.2.5 Communication Service
For the communication service, we want to centralize all methods of communicating
externally to users in one service. Since Expresso relies on asynchronous distribution
and shipping, we need to push communications to users in ways which will get their
attention rather than requiring constant monitoring of our application. The best way to
accomplish this is through email events which are triggered based on application
state. The communication service, Bloodlines is designed with that end goal in mind.

Design Considerations

In this service, we want to value accuracy and reliability over speed. Taking that in
mind, we can rely on queuing and events rather than raw API calls. A critical feature
of this service is being able to respond to user interactions easily. Aka, we want to
send an email each time a person purchases an item or has a shipment inbound.
Events logically could make our lives far easier. We want to avoid a situation in which
a change to Bloodlines’ code requires changes in the way we dispatch events from
other services which could trigger communications.

Content

This object gives reference to various static content messages with the metadata
necessary to correctly send a message.

Receipt

PAGE 10

The receipt object contains a record of some content being sent to a user. The state
of the receipt indicates whether it’s waiting to be sent, in the send queue, or finished.

Job

The job object represents a list of content to be sent at a given time. Jobs let content
be scheduled for entry into the queue. Ready is a job that’s waiting to be sent to the
send queue, sending is a jobs that’s currently queuing, and finished means that all the
receipts have been sent to the send queue.

Preference

This object tracks a user’s communication preferences. We don’t want to send a user
emails or sms if they’ve opted out of that type of communication.

Trigger

The trigger object sets a default pairing of content and parameters that can be
updated and used from external services. This will help us update content that’s sent
quite often without making changes to the code itself.

3.3 DESIGN ANALYSIS

3.3.1 Technical Feasibility
Currently, the MVP so far is technically feasible. All of the previously mentioned
design choices thus far will be within our grasp for the following reasons:

1. We will be using various existing api’s for payments and shipping
2. We will be leaving the storing of inventory up to the coffee providers instead of

trying to store it in some other location.
3. We will be creating several manageable microservices.

The bulk of our potential issues lie in the hands of the coffee providers. Should one or
more of them be happy to work with us, keep their inventory data up-to-date, and
adequately respond and ship out product on time, then all will be well. Other than
that, there are currently no major technical challenges that we expect to come across
as all five team members are either well experienced in the languages and tools we
will be using, or are more than capable of picking up and using new tools as we go.

PAGE 11

4 Development
The primary driver for development of our services is the interface with which they
communicate with other services and the front end. For this reason, the following
sections detail the interface specifications for each service including return data
models and API specifications.

4.1 USER SERVICE
Data Objects

Consumer Provider

name
email
phone
id
subscription_id
billing_id
address_line1
address_line2
address_city
address_zip
address_country

string
string
string
int
int
int
string
string
string
string
string

business_name
email
phone
id
billing
inventory
address_line1
address_line2
address_city
address_zip
address_country

string
string
string
int
int
int[]
string
string
string
string
string

Consumer API Interface

POST /consumer

Parameters: firstname, lastname, email, phone, password, address_line1,
address_line2, address_city, address_zip, address_country
Action: Creates a new consumer entry and returns the id that references that user,
otherwise returns an error.

GET /consumer

Action: Returns an array containing all of the registered consumers.

PATCH /consumer/:consumer_id

Parameters: firstname, lastname, email, phone, password, address_line1,
address_line2, address_city, address_zip, address_country, billing, subscription
Action: Updates the information for the specified consumer.

PAGE 12

DELETE /consumer/:consumer_id

Action: Deletes the specified consumer.

GET /consumer/:consumer_id

Action: Returns information about the specified consumer.

Provider API Interface

POST /provider

Parameters: name, email, phone, password, address_line1, address_line2,
address_city, address_zip, address_country
Action: Creates a new shop entry and returns the id that references that provider,
otherwise returns an error.

GET /provider

Action: Returns an array containing all of the registered providers.

PATCH /provider/:provider_id

Parameters: name, email, phone, password, address_line1, address_line2,
address_city, address_zip, address_country, billing, inventory
Action: Updates the information for the specified provider.

DELETE /provider/:provider_id

Action: Deletes the specified provider.

GET /provider/:provider_id

Action: Returns information about the specified provider.

PAGE 13

4.2 BILLING SERVICE

Data Objects

BillingCustomerAccount

id
user_id

stripe_customer_id
stripe_card_id

email
created_at

int
int
string
string
string
date

BillingRoasterAccount

id
roaster_id

stripe_account_id
stripe_account_secret

email
created_at

int, PK
int
string
string
string
date

BillingSubscription

id
subscription_id

roaster_id
user_id

stripe_subscription_id
stripe_plan_id

amount
created_at

due_at

int
int
int
int
string
string
double
date
date

Billing Account Interface

POST /billing/customer/account/:user_id

Parameters: user_id, email, (optional) parameters
Action: Creates a new billing account for the customer and returns the id of the
account or errors

PAGE 14

GET /billing/customer/account/:id

Parameters: id, (optional) parameters
Action: Retrieves the billing account for the customer, returning an object of the
account or error if it does not exist.

DELETE /billing/customer/account/:id

Parameters: id, (optional) parameters
Action: Deletes the billing account found by id and returns success or errors
otherwise

POST /billing/roaster/account/:roaster_id

Parameters: roaster_id, email, (optional) parameters
Action: Creates a new billing account for the roaster and returns the id of the account
or errors

GET /billing/roaster/account/:id

Parameters: id, (optional) parameters
Action: Retrieves the billing account for the roaster, returning an object of the
account or error if it does not exist.

DELETE /billing/roaster/account/:id

Parameters: id, (optional) parameters
Action: Deletes the billing account found by id and returns success or errors
otherwise

Billing Subscription Interface

POST /billing/subscribe

Parameters: user_id, roaster_id, subscription_id, amount, (optional) parameters
Action: Creates a billing subscription for the passed subscription. Returns the
subscription id of the created subscription or error if none was created.

GET /billing/subscription/:id

Parameters: id, (optional) parameters
Action: Retrieves the billing subscription for the given billing subscription id returning
an object of the subscription or error if it does not exist.

GET /billing/subscription/:customer_id

Parameters: customer_id, (optional) parameters

PAGE 15

Action: Retrieves the billing subscription by customer id, returning an object of the
subscription or error if it does not exist.

GET /billing/subscriptions/:roaster_id

Parameters: roaster_id, (optional) parameters
Action: Retrieves all billing subscriptions for the roaster, returning an array of all
subscriptions or error if empty.

Stripe Customer Interface

We will use Customer to represent customers in our product, which are the
individuals subscribing to roasters. Here is a detailed description of the Stripe
Customer object and API: https://stripe.com/docs/api#customer_object

In our application, we will maintain and store the Customer ID from Stripe in
BillingCustomerAccount. The Stripe Customer is created using Stripe’s API when our
internal customer billing API is called.

Stripe Account Interface

We will use Account to represent roasters (or shops) in our product, which are the
companies offering beans for subscription. Here is a detailed description of the
Stripe Account object and API: https://stripe.com/docs/api#account

In our application, we will maintain and store the Account ID from Stripe in
BillingRoasterAccount. The Stripe Account is created using Stripe’s API when our
internal roaster billing API is called. We will be using a Managed Account
(https://stripe.com/docs/connect/managed-accounts), which is created and
maintained programmatically by our application. Because of this, we need to handle
all identity verification. Stripe offers many variations of secure ways to collect
customer information, including secure libraries of their own.

Stripe Connect Interface

Connect is Stripe’s way of allowing a single account to maintain other accounts along
with customers. For our use case, we need to have customers paying for
subscriptions, and roasters receiving money for the subscriptions when they’re paid.
To do this, we can use Stripes Connect to programmatically create Stripe Accounts
for our roasters, as well as maintain subscriptions between customers and roasters.

We will be creating Customers for our single Expresso Stripe Account, which link to
(Managed) Accounts for roasters. Subscriptions will be maintained in our Expresso

PAGE 16

https://stripe.com/docs/api#customer_object
https://stripe.com/docs/api#account
https://stripe.com/docs/connect/managed-accounts

Account, as described below. More details on Connect can be found here:
https://stripe.com/docs/connect

Subscription Interface

We will use Subscription to handle billing and payment between our customer
accounts and roaster accounts. Stripe’s Subscription object can be viewed in detail
here: https://stripe.com/docs/api#account

In our application, we will maintain and store the Account ID from Stripe in
BillingRoasterAccount. The Stripe Account is created using Stripe’s API when our
internal roaster billing API is called.

Since subscriptions for Stripes Connect do not offer a destination, we “can create a
customer and a subscription in a connected account using a token created with
either the platform’s or the connected account’s publishable key.” On our end, we
need to maintain these customer and account keys.
(https://stripe.com/docs/connect/payments-fees#creating-subscriptions)

Payment Interface

Payments will be made by recurring charges to the Customer's debit card. We will
have Webhooks (https://stripe.com/docs/webhooks) set up to listen for these events.
When the status of a subscription changes, we will take the money from the
Customer and pay it to the Roasters on the subscription.

Each Customer will have an Invoice when their Subscription is created. Stripe
automatically handles creation and payment of Invoices on a Subscription. If the
Customer for some reason did not successfully pay their Invoice, our Webhooks will
inform us and we will not allow the Customer to access their Subscription. In
addition, we will inform the Roaster to not ship the product. The Subscription will be
paused, or put on hold, and we will follow-up with the Customer to find out details of
why the payment did not go through.

PAGE 17

https://stripe.com/docs/connect
https://stripe.com/docs/api#account
https://stripe.com/docs/connect/payments-fees#creating-subscriptions
https://stripe.com/docs/webhooks

4.3 INVENTORY SERVICE

Data Objects:

Packaged_Product

 name
picture

type
In_stock_bags

price
oz_in_bag

id
shop_id

lead_time

reorder_level

pipeline_stock

string
string (image url)
string
Int
double
double
int
int
int (number of days it takes to
create/receive more bags of this type of
beans)
double (If in_stock_bags goes below this
number, a new shipment should be
ordered).
double (number of bags of beans currently

Raw_Materials

bean_name
type

in_stock_lb
id

lead_time

reorder_level

pipeline_stock

string
string
double
int
int (number of days it takes to receive a new
shipment of beans)
double (If in_stock_lb goes below this
number, a new shipment should be
ordered).
double (amount of beans, in pounds,
currently being shipped to the coffee shop)

Global Inventory Interface

GET /inventory

Action: Returns an array of packaged product objects.

PAGE 18

GET /inventory/:name

Action: Returns the coffee product object with the given product name.

Local Inventory Interface

GET /inventory/:bean_name
Action: Returns the coffee bean object with the given bean name.

POST /order

Parameters: coffee bean type, manufacturer, payment method, etc
Action: Sends out a message with the given parameters, ordering more coffee beans.
This can either be a message to the coffee shop owner(s) or directly to a bean
supplier.

PUT /package

Parameters: A set of one or more tuples, each specifying a coffee name, a number of
ounces
Action: Subtracts the amounts withdrawn for each coffee bean type

DELETE /inventory/:bean_name

Action: Removes the object with the specified bean_name

4.4 SUBSCRIPTION SERVICE

Data Objects:

subscription

subscription_id int
Unique id created for this subscription

subscription_type string
Type of subscription

user_id int
Unique id of user associated with this
subscription

status string
Status of subscription:

PAGE 19

active Subscription is live

pending Subscription has
yet to be paid

cancelled Subscription is
cancelled and user
will no longer be
billed

inactive Subscription has
been paused to a
later date

created_at date
The date this subscription was created

start_at date
The date this subscription will be active

total_price double
Total price of all orders within the
subscription

orders

shop_id int
Unique id created for roaster

oz_in_bag double
Amount of coffee beans, in ounces

bean_name string
Type of coffee bean

type string
Type of roast

price double
Price of order

Subscription API Interface

POST /subscription

PAGE 20

Parameters: user_id
Action: Create a new subscription.
Response: 200 OK, Content-type: application/json

{
 "subscription": {
 "subscription_id": "1",
 "subscription_type": "tier2",
 "user_id": "10",
 "status": "live",
 "created_at": "03-10-15",
 "start_at": "03-15-15",
 “total_price”: “19.00”
 "orders": [
 {
 "shop_id": "1",
 "amount": "7",
 "bean_name": "Arabica",
 "type": "Medium Roast",
 “price”: “10.00”
 },
 {
 "shop_id": "2",
 "amount": "14",
 "bean_name": "Robusta",
 "type": "Dark Roast",
 “price”: “9.00”
 }
]
 }
}

GET /subscription/:subscription_id
Parameters: subscription_id
Action: View a subscription
Response: 200 OK, Content-type: application/json

POST /subscription/:subscription_id
Parameters: subscription_id, status
Action: Update current subscription. Only active, pending and inactive subscriptions can
be updated
Response: 200 OK, Content-type: application/json

PAGE 21

POST /subscription/:subscription_id/deactivate
Parameters: subscription_id
Action: Pause a subscription
Response: 200 OK, Content-type: application/json

POST /subscription/:subscription_id/cancel
Parameters: subscription_id
Action: Cancel a subscription
Response: 200 OK, Content-type: application/json

4.5 COMMUNICATION SERVICE

State Enums:

content_type - EMAIL
send_status - READY, QUEUED, SUCCESS, FAILURE
send_state - SUBSCRIBED, UNSUBSCRIBED, MINIMAL

Data Objects:

Content Receipt

content_type
string
[]string
uuid
bool

type (EMAIL)
text
parameters
id
active

uuid
[]string
uuid
uuid
timestamp
send_status

recipient
values
content_id
id
time_sent
status

Job Preference

[]uuid
timestamp
uuid
send_status

receipts
time_sent
id
status

uuid
send_state
send_state

user_id
email
sms

Trigger

uuid
uuid
string

id
content_id

key

PAGE 22

[]string parameters

Content Interface

POST /content

Parameters: type, text, (optional) parameters
Action: Creates a new content entry and returns the id that references that content,
otherwise returns an error.

GET /content?count=<max>&offset=<amount>

Action: Returns an array of active content objects with count elements starting from
the offset element.

GET /content/:content_id

Action: Returns the content with the given id, error otherwise

PUT /content/:content_id

Parameters: (optional) type, (optional) text, (optional) parameters
Action: Updates the object, content_id with the given values, and returns the updated
object.

DELETE /content/:content_id

Action: Deactivates the object, content_id and returns ‘success’ otherwise an error.

Receipt Interface

POST /send

Parameters: recipient_id, sender_email, content_id, (optional) values
Action: queues a new message with the given content_id to the recipient_id . Optional
values should correspond to the parameters required by the referenced content.

GET /receipt?count=<max>&offset=<amount>

Parameters: In addition to count and offset, recipient_id, content_id, and status filter
the returned receipts.
Action: Returns an array of receipts with count elements (default 20) starting from the
offset element.

PAGE 23

GET /receipt/:receipt_id

Action: Returns the receipt with the given id, error otherwise

Job Interface

POST /job

Parameters: receipts[], (optional) timeSend
Action: Creates a new job which will send a message according to the receipt_id’s in
receipts list at the provided time (UNIX). If no time is provided, it’ll start queuing
messages now.

GET /job?count=<max>&offset=<amount>

Action: Returns an array of job objects with count elements starting from the offset
element. Objects will have limited receipt info, and the state filters jobs according to
their status.

GET /job/:job_id

Action: Returns the job with the given id, error otherwise

PUT /job/:job_id

Parameters: (optional) type, (optional) text, (optional) parameters
Action: Updates the job, job_id with the given values, and returns the updated object.
Only available to jobs in the READY state.

DELETE /job/:job_id

Action: Stops the job, job_id and returns ‘success’ otherwise an error. This only
affects jobs in the READY state.

Preference Interface

POST /preference

Parameters: user_id, (optional) email, (optional) sms
Action: Creates new preference setting for the user_id. Defaults to email=true and
sms=true.

PAGE 24

GET /preference/:user_id

Action: Returns the preference settings for the given user_id, error otherwise

PATCH /preference/:user_id

Parameters: (optional) email, (optional) sms
Action: Updates the preference settings of the user to match the provided values. A
value being absent means it won’t be altered.

DELETE /preference/:user_id

Action: Removes the preference settings for the user designated by user_id .

Trigger Interface

POST /trigger

Parameters: content_id, key, (optional) parameters
Action: Creates new trigger where the given key references the given content_id. The
optional parameters will be the attempted fallback each time a trigger is started.
Returns the created trigger object.

GET /trigger?count=<max>&offset=<count>

Action: Returns a list of triggers with count elements starting from the offset.

GET /trigger/:trigger_key

Action: Returns the trigger for the given key, error otherwise

PUT /trigger/:trigger_key

Action: Updates the trigger with the new object information and returns the updated
object.

DELETE /trigger/:trigger_key

Action: Removes the trigger.

POST /trigger/:trigger_key/activate

Parameters: trigger_key (the string which references the trigger), (optional)
parameters

PAGE 25

Action: This will send a message with the content and parameters of the given
trigger_key. The provided parameters will override any saved parameters of the
trigger. If the given parameters combined with the saved trigger parameters don’t
fulfill the content’s required parameters, this will error, and no message will be sent.

4.6 TECHNICAL STACK

4.6.1 Go
Go is a free and open source programming language. Go makes it easy to map routes
to functions in the application. Because of this we will be using Go to implement our
backend services.

4.6.2 MySQL
MySQL is a relational database management system. MySQL is scalable and high
performance. We will be using a MySQL database to hold information about
customers, shops, inventory, and orders.

4.6.3 Node
NodeJS is a JavaScript runtime environment which uses an event-driven architecture.
NodeJS is capable of asynchronous IO to optimize throughput and scalability for web
applications. We will use Node for an entry point to our frontend and use the node
package manager (npm) to download and install client javascript libraries.

4.6.4 React
React is a JavaScript library that provides views for data displayed using HTML.
React allows for efficient updating of the web page when data changes. React can
also be used to create a responsive website. Because of these features we will be
using React to create our front-end website.

4.6.5 RabbitMQ
RabbitMQ is a message queueing service that allows different components to interact
with each other.

4.2.6 Redis
Redis is a data structure server, which allows different processes to query and modify
the same data.

4.2.7 Stripe
Stripe allows individuals to accept and make payments over the Internet. We will be
using Stripe to handle charging customers, subscription payments, and paying the
shops for the orders they ship.

PAGE 26

4.2.8 Shippo
Shippo is an API that allows for the creation of shipping labels, shipping packages,
and tracking the packages from various providers. We will be using Shippo to send
the coffee beans to the customers.

4.2.9 SparkPost
SparkPost is an email delivery service. We will be using SparkPost in our
communication service to keep customers updated about their subscriptions,
shipped orders, and any messages they have received.

4.7 TESTING

4.7.1 Methodology
With many disparate services, integration testing from the start is a high priority for
development. In order to guarantee reliable integration tests, reasonable unit testing
should also be conducted on implemented interfaces.

At the very least, testing for each service should exercise mocks from other services
which can be created through golang’s built-in mocking library. Using go’s built-in
functionality for mocking in unit testing, unit tests can run without relying on correct
functionality from other services, so development can continue concurrently without
one implementation bottlenecking another.

In addition to depending on mocks for mocking integrations during unit testing, full
integration testing is planned as soon as possible. To accomplish painless integration
testing for each service, we plan on using containerization to allow developers to run
any dependent services locally while running integration suites or conducting manual
integration tests.

4.7.2 Testing Criterion
We’ve decided on two primary testing criterion with which we’ll evaluate tests for
validity and intensity: branch coverage and requirements acceptance. With these two
primary requirements guiding our test writing, we minimize time consuming errors,
while avoiding spending too much time writing test cases.

Optimizing for high branch coverage will help ensure that most lines of code are run
before pushed to development for integration testing and that we’ve handled error
cases which we expect. Since error handling in go consists of testing for error values
returned from function calls, branch coverage will help prioritize catching erroneous
responses in testing before integration.

PAGE 27

https://github.com/golang/mock

Requirements Acceptance is a focus of integration testing where we must test
whether the system works together based on our functional and nonfunctional
requirements. By meeting the requirements acceptance criteria, we can validate that
the Expresso functionality meets our initial requirements for completion.

4.7.3 Process
To implement and maintain the testing criterion within our methodology, we plan on
using Travis CI, a continuous integration tool, to constantly test code on commits

PAGE 28

https://travis-ci.org/

5 Conclusions

5.1 COMPLETED WORK

We have completed version 1 of our project plan. This plan introduces our
application, main deliverables, design concepts, requirements and specifications,
challenges, and a timeline for completion. We have traced though both Consumer
and Provider workflows which identified Exresso’s key functionalities. We then split
these functionalities into separate microservices: User, Billing, Inventory,
Subscription, and Communication services. We each took responsibility of a
micro-service and introduced data objects and REST API endpoints. Jonny Krysh
created the Expresso website, consolidating all Expresso related documents in one
place and displaying information about the team.

5.2 GOALS

From a consumer perspective, our service will help people discover their favorite
coffee brands and pay to get them shipped to their door. We want to provide a
convenient, reliable, and easy way for people to have just the right amount of coffee
that fits their taste delivered to their door. We plan to do this by creating a fully
automated delivery service for roasters, as well as a platform for customers to
discover, purchase, and review a variety of coffee roasted by small shops around the
country. This will begin in Ames, eventually scaling to Iowa and (a lofty foresight)
nationally.

5.3 SOLUTION

Given the assessed advantages and disadvantages above, we decided on a solution
with responsive web applications for both Consumers and Producers and a
microservice backend system powering the interactions with a distributed shipping
method.

By using a web application as the primary user interface for Expresso, we can
maximize usability across devices while condensing our development workflow into a
single platform. While mobile applications provide easy access on phones and
tablets, developing applications can be time intensive with limited abstraction
between applications. Developing mobile solutions which function at a high level on
both Android and iOS platforms would require significant development effort which

PAGE 29

could be instead applied to building the core product. An additional consideration in
our decision to build the UI as a web application was the primary use cases of
Expresso. From a user perspective, the ideal experience is ordering a subscription
and continuously receiving high quality product within expected timeframes without
visiting the website again. The value of Expresso isn’t in an interface users spend a
great deal of time using, but in reliability of our back end systems. Once again, this
highlights that the best use of our development time is in building reliable systems for
handling the logistics of shipping coffee subscriptions.

When considering whether to use a monolithic or microservices architecture, we
weighed the technical as well as development process impacts of both options and
decided on the microservice approach for a few reasons. One, microservices offer
increased flexibility and autonomy for developers. Rather than performing rapid
development on a code base with dependencies spread throughout, we can work on
smaller services with mocked responses from areas which haven’t been
implemented. Scaling is an additional point in favor of using microservices which
allow us to individually increase capacity for services which are facing a heady load
rather than scaling the entire application. This would let us react rapidly to high
demand situations.

Finally, we chose to work with the distributed model for shipping the Producer’s
product to our Consumers. This model allows Expresso to ensure fresh coffee being
shipped along the shortest path from Producer to Consumer. The distributed model
increases our logistical workload, with having to manage packaging and shipping
information, but ensuring freshly delivered beans took priority. Additionally, this
method removes a barrier to expanding Expresso to additional Producers by letting
the Producers manage their own inventory and not sending their beans to a central
distribution center.

PAGE 30

