
Expresso
Team 17-34

Advisor: Bill Adamowski

Team Members
Jonny Krysh Lucas Collins Jake Long

Derek Yu Garret Meier

Overview

Project Goal and Scope

Infrastructure & Design Overview

Backend

Frontend

Completed Work

Overview
Scope

Coffee subscription

Target local roasters

Quick delivery

Easily customizable
Roasters Customers

Expresso

Overview
Goals

Utilize good architecture patterns

Build reliable distributed systems

Allow:

Roasters to post and fulfill orders

Customers to subscribe and receive beans

Overview
Design Decisions

Decentralized

● Beans will be fresher when
shipped

● Saves time and money by not
needing to ship to middle-man
warehouse

Microservice

● Easily Scalable
● Easier to deploy
● Easier to split work between

team members

Infrastructure
Current Design

Infrastructure
Current Design

Infrastructure
Proxy Layer

Requests

NGINXLet’s Encrypt

Service
1

Frontend

Service
n.

Translate domain to IP
and port

Infrastructure
Deployment

Local Repo

Github

Automated Builds

TravisCI
Coveralls

Containerized
Build

Docker

Production
Deployment

Digital Ocean

1. Commit Locally

2. Push Updates

3. Test build and get coverage

4. Build production image

5. Deploy.

Infrastructure
Testing
Challenges:
● Integrating separate

services
● Monitoring service

behavior

Goals:
● Obtain useful metrics
● Display service errors

Backend
Service Layer

Backend
Service Layer

Users
(TownCenter)

Inventory
(Warehouse)

Subscriptions
(Covenant)

Communication
(Bloodlines)

Billing
(Coinage)

Backend
Architecture

Router

Handlers

Helpers

Gateway

1. Leverage microservice

2. Route requests

4. Integrate database manipulation per request

3. Handle requests

Config

Backend
Testing

Mock Tools

● mockery
● testify
● httpmock
● sql-mock

General Tools

● Postman

Primary Targets

● Gateways
● Helpers
● Routers

Backend
Challenges
● Code reuse

○ Each service needs similar boilerplate code

● Integration testing
○ Needs mocks for testing
○ Docker containers

● Dependency management
○ Services depending on each other

Backend
Security
● Passwords hashed with bcrypt

○ Adaptive for hardware improvements

● JSON Web Token (JWT)
○ Sent in header of HTTP request
○ Stores information about the user

● Payment information
○ Use Stripe to manage billing

information
Source: https://jwt.io/introduction/

Frontend
Architecture

Frontend
Architecture

Used CreateReactApp React starter pack for environment set-up

NodeJS with Webpack handles all configuration and building / bundling

React, Redux, and (React) Router for all views, logic, and app state

Frontend
Architecture

Action

ReducerStore

State

Component DISPATCHES

SENT T
O

UPDATES

CONTAINS

USED IN

Frontend
Challenges
● Microservices can make it difficult to aggregate data on the frontend

○ Multiple requests for one set of data
○ Fixed on server side

● Consistent styling with Tachyons library
○ CSS Framework for class names as styles

● Login authentication and persistent sessions

Completed Work

23092 lines of code

(16249 of Go and 6843 of JS)

1129 git commits over 6 repos

79 closed PRs

66 resolved issues

Completed Work

☑ Utilize modern architecture practices

☑ Build reliable distributed systems

☑ Allow Roasters to post and fulfill orders

☑ Allow Customers to subscribe and receive beans

☑ Build Minimum Viable Product

expresso.store

https://expresso.store
https://expresso.store

